函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1]上的任意两点x1,x2,恒有f(x1)-f(x2)的绝对值小于1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 02:54:52
函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1]上的任意两点x1,x2,恒有f(x1)-f(x2)的绝对值小于1/2

函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1]上的任意两点x1,x2,恒有f(x1)-f(x2)的绝对值小于1/2
函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1]上的任意两点x1,x2,恒有f(x1)-f(x2)的绝对值小于1/2

函数f(x)在[0,1]上连续,在(0,1)内可微,且f(x)导数的绝对值小于1,又f(0)=f(1),证明对于[0,1]上的任意两点x1,x2,恒有f(x1)-f(x2)的绝对值小于1/2
反证法,假定在[0,1]有两个点a,b(a0.5
根据拉格朗日中值定理,在(a,b)中存在点c使得f(b)-f(a)=(b-a)*f'(c)
即有:|f(b)-f(a)|=(b-a)*|f'(c)|>0.5
已知|f'(c)|0.5 (后面要用这个结论)
再两次利用拉格朗日中值定理:
在(0,a)中存在d使得:f(a)-f(0)=a*f'(d)
在(b,1)中存在e使得:f(1)-(b)=(1-b)*f'(e)
两式相加并利用f(0)=f(1)得:f(a)-f(b)=a*f'(d) + (1-b)*f'(e)
根据绝对值不等式得:|f(a)-f(b)|≤a*|f'(d)| + (1-b)*|f'(e)|
因为|f'(d)|和|f'(e)|都

不妨设x1<=x2
若|x1-x2|=x2-x1<=1/2
所以|f(x1)-f(x2)|=|f'(c)||x1-x2|<1*1/2=1/2
若x2-x1>1/2,则1-(x2-x1)<1/2
所以|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)|
=|f'(c1)(x1-0)+f'(c2)(1-x2)|
<=|f'(c1)|*x1+|f'(c2)*(1-x2)