函数的连续性和一致连续性的异同及作用.

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/10 23:40:45
函数的连续性和一致连续性的异同及作用.

函数的连续性和一致连续性的异同及作用.
函数的连续性和一致连续性的异同及作用.

函数的连续性和一致连续性的异同及作用.
由函数的连续性定义到一致连续性定义的理解思路
(因为数学语言很严谨,但却不丰富,故不少朋友对这两个定义理解起来都比较吃力,其实这两个定义有很大的差别,现在以我的理解,用比较饱满的言语,来叙述一下连续性定义到一致连续性定义的理解思路以及二者的区别.其实将本文耐心读完后,你就知道这两个定义想讲什么了.)
一、由函数的连续性定义到一致连续性定义的理解思路:
函数连续性的定义是 :对于任意小的ε>0,和在区间I上所有的点x而言,存在δ>0,同时对于任意属于N(x,δ)的y而言,如果都存在|f(y)-f(x)|0时的图像,他将连续的定义用于这个图中:他在图上取了任意的三个点,根据连续的定义,他先假设这三个点在Y轴上都对应同一个已经被确定下来的ε,这时他观察X轴发现,图上三个点也都可以找到与之对应的δ,但也惊奇的发现,三个点对应的δ区间却不一样.
(他开始回忆什么是δ区间?对于函数中一个固定的点而言,一个固定的ε肯定对应着许多δ,这些δ可以组成一个最大的区间,叫δ区间.即一个固定的点,一个确定的ε,对应一个确定的δ区间,而且只有当ε改变时,这个δ区间才会改变,从而也说明对于一个固定的点而言,δ区间的改变只受ε改变的影响.)
但他在三个点上看到的却不是这么一回事,从三个点的角度看,即使固定下来一个ε,δ区间也会随着三个点位置的不同而发生变化,所以他得出了一个结论——基于三个点,进而对于函数的全局上来说,δ区间除了受ε影响外,还会受到点位置的不同的影响.
基于连续性的定义,从一个点的角度看,δ区间的改变只受ε改变的影响;从全局看呢,δ区间还受点位置的影响.这时他在琢磨了:在连续性定义中,δ区间受到两个因素的影响,在这个定义下,δ区间受到的影响因素太多了,以后碰到事情不好分析,他希望创造出一个新的连续定义来规避其中点位变化的因素,在这个新的连续性定义下,让δ只受ε的影响.这该如何规避呢?
他发现,此前X1 X2 X3 三个点对应着三个不同的δ区间δ1,δ2,δ3,其中区间δ3最小,于是他选了其中最小的一个区间δ3,他将区间δ3放在X1,X2这两个点上试了一下他发现,如果X1、X2不用此前的δ1,δ2区间,而只用最小的这个δ3区间,其实函数也是连续的.进而他想,对于一个连续函数,在确定一个ε后,在区间I上那么多点X中,肯定也存在一个最小的δ区间,使得函数连续.那么如果把这个最小的δ区间构建到新的定义中,取代原来的那些大小不一变化的δ区间,结果会如何,会不会达成规避点位影响的目标呢?
于是他弄了一个新的连续定义,起名一致连续定义,同时他给最小的这个δ区间取了个新名字,叫δ(ε),该定义是:
如果函数是一致连续的,那么对于任意小的一个ε>0,对于在区间I上所有的点x而言,就对应着许多不同的δ区间,同时也会存在一个最小的δ区间,记为δ(ε)>0,然后,对于任意属于N(x,δ(δ))的y而言,也将存在|f(y)-f(x)|0,和在区间I上所有的点x而言,存在δ>0,同时对于任意属于N(x,δ)的y而言,如果都存在|f(y)-f(x)|0,对于在区间I上所有的点x而言,就对应着许多不同的δ区间,同时也会存在一个最小的δ区间,记为δ(ε)>0,然后,对于任意属于N(x,δ(δ))的y而言,存在|f(y)-f(x)|

有几个结论可以看看:
f(x)在区间I上一致连续,则必连续,反之不成立。
但闭区间上的连续函数一定一致连续。
通常我们说连续,可以是一点,但一致连续一般是某个区间;
说某一点X0连续,可以找到x0附近的领域δ(可能与x0有关),使函数值差的绝对值小于ε;
但说在区间一致连续,则可以找到一个“一致”的δ(与点无关),使函数值差的绝对值小于ε;...

全部展开

有几个结论可以看看:
f(x)在区间I上一致连续,则必连续,反之不成立。
但闭区间上的连续函数一定一致连续。
通常我们说连续,可以是一点,但一致连续一般是某个区间;
说某一点X0连续,可以找到x0附近的领域δ(可能与x0有关),使函数值差的绝对值小于ε;
但说在区间一致连续,则可以找到一个“一致”的δ(与点无关),使函数值差的绝对值小于ε;

收起